Laboratory for Acoustics

Determination of the sound absorption (reverberation room method) of different ceiling and wall panels, type Parmephon, manufactured by Gökçe Acoustics

Report number A 1597-2E dd. 28 June 2007
Index

1. INTRODUCTION 3

2. NORMS AND GUIDELINES 4

3. TESTED CONSTRUCTION 5

4. MEASUREMENTS 7
 4.1. Method 7
 4.2. Accuracy 8
 4.3. Atmospheric conditions 9
 4.4. Results 9
1. INTRODUCTION

At the request of Gökçe Acoustics based in Adana (Turkey), laboratory measurements of the sound absorption (reverberation room method) were carried out on

different ceiling and wall panels, type Parmephon,
manufactured by Gökçe Acoustics

in the Laboratory for Acoustics of Peutz bv, at Mook, The Netherlands (see figure 1).

For this type of measurements the Laboratory for Acoustics has been accredited by the Dutch "Stichting Raad voor Ac creditatie" (RvA).

The RvA is member of the EA MLA

Compared with the version published on 11 May 2007, this test report is modified on the following issues:

- textual modifications, wallpanel thickness changed from 20 mm to 40 mm
2. NORMS AND GUIDELINES

The measurements have been carried out according to the Quality Manual of the Laboratory for Acoustics as well as:

NOTE: this international standard has been accepted within all EU-countries as European Norm EN 354:2003

Various other related norms:

ASTM-C423-90a Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method

2) According to this norm, the report should include for each measurement the mean reverberation times T_1 and T_2 at each frequency. Because these figures are not relevant for judging the quality of the product being tested, but merely for judging the accuracy of the calculations, they have been omitted in this report. It is possible of course to reproduce those figures at any time if the principal requests this.
3. TESTED CONSTRUCTION

The following specifications were taken from the information supplied by the principal. The density of the materials as reported is derived from the actual weighing by the laboratory staff of the materials under test.

The following ceiling panels have been tested.

type: Parmephon Snow

- Manufacturer: Gökçe Acoustics
- Material: Glass wool
- Panel sizes: 594 x 594 mm
- Total thickness: 19 mm
- Finish front: Painted glass tissue
- Finish back: Glass tissue
- Total mass: 1.9 kg/m² (checked by the laboratory)

type: Parmephon Advance

- Manufacturer: Gökçe Acoustics
- Material: Glass wool
- Panel sizes: 594 x 594 mm
- Total thickness: 19 mm
- Finish front: Painted glass tissue
- Finish back: Glass tissue
- Total mass: 1.5 kg/m² (checked by the laboratory)

type: Parmephon Polo

- Manufacturer: Gökçe Acoustics
- Material: Glass wool
- Panel sizes: 594 x 594 mm
- Total thickness: 19 mm
- Finish front: Painted glass tissue
- Finish back: Glass tissue
- Total mass: 1.6 kg/m² (checked by the laboratory)
The following wall panels have been tested.

type: Parmephon wallpanel 20 mm

- **manufacturer:** Gökçe Acoustics
- **material:** glass wool
- **panel sizes:** 1200 x 600 mm
- **total thickness:** 20 mm
- **finish front:** glastissue + fabric
- **finish back:** glass tissue
- **finish edges plastered (see figure 3)**
- **total mass:** 2.4 kg/m² (checked by the laboratory)

type: Parmephon wallpanel 40 mm

- **manufacturer:** Gökçe Acoustics
- **material:** glass wool
- **panel sizes:** 1200 x 600 mm
- **total thickness:** 40 mm
- **finish front:** glastissue + fabric
- **finish back:** glass tissue
- **finish edges plastered with a groove (see figure 3)**
- **total mass:** 4.5 kg/m² (checked by the laboratory)

The results as presented here relate only to the tested items and laboratory conditions as described in this report. The laboratory can make no judgement about the representativity of the tested samples.
4. MEASUREMENTS

The ceiling panels to be measured (see description in chapter 3) are mounted on a suspension structure at a distance of 200 mm above the floor of the reverberation room. (type E-200 mounting according to ISO 354:2003). The sides of the set-up were enclosed by 18 mm thick plastic covered chipwood board and sealed by tape.

The wall panels to be measured (see description in chapter 3) are mounted in the following measurement set-ups:

1. mounted directly on the floor of the reverberation room. (type A-mounting according to ISO 354:2003, Annex B, Test specimen mountings for sound absorption tests)
2. mounted on a suspension structure with a height of 40 mm. The distance above the floor of the reverberation room was 60 mm for the wall panels with a thickness of 20 mm and 80 mm for the wall panels with a thickness of 40 mm. The sides of the set-up were sealed by tape (see figure 3).

4.1. Method

The tests were conducted in accordance with the provisions of the test method ISO 354 in the reverberation room of “Peutz bv” in Mook (the Netherlands) (see figure 1). The relevant data regarding the reverberation room are given in figure 2 of this report.

By means of reverberation measurements the reverberation time of the room is measured under two conditions:
- when the reverberation room is empty
- when the construction under test is inside the reverberation room

In general, once material is placed into the reverberation room a lower reverberation time will result.

The difference in reverberation times is a measure of the amount of absorption brought into the room.

Measurements and calculations were carried out in 1/3-octave bandwidth from 100 to 5000 Hz, according to the norms. Where applicable the octave values have been calculated from these 1/3-octave values.

From the reverberation measurements in the empty reverberation room the equivalent sound absorption A_s is calculated (per frequency band) according to formula 1 and expressed in m^2.

$$ A_s = \frac{55.3 \cdot V}{c \cdot T_s} - 4 \cdot Vm $$

in which:

$$ A_{1597-2E-RA} $$
\[V = \text{the volume of the reverberation room in m}^3 \]
\[T_1 = \text{the reverberation time in the empty reverberation room in s} \]
\[c = \text{the speed of sound in the air, in m/s, calculated according to:} \]
\[c = 331 + 0.6 t \text{ [m/s]} \]
(2)

in which:
\[t = \text{the temperature in degrees Celsius; this formula is valid for temperatures between 15 and 30 °C} \]
\[m = 10 \log(c) \]
(3)

in which:
\[m = \text{"attenuation coefficient" calculated according to ISO 9613-1} \]

In the same manner the equivalent sound absorption \(A \) for the room with the test specimen is calculated according to formula 4, also expressed in m
\[A_2 = \frac{55.3 V}{c T_2} - 0.4 V \]
(4)

in which:
\[c \text{ and } V \text{ have the same definition as in formula 1 and} \]
\[T_2 = \text{the reverberation time (in s) of the reverberation room with the test specimen placed inside} \]

The equivalent sound absorption \(A_2 \) of the test specimen has been calculated according to formula 5 and is expressed in m
\[A = A_1 - A_2 \]
(5)

When the test specimen consists of one plane with an area between 10 and 12 m\(^2\), the sound absorption coefficient \(s \) has to be calculated according to formula 6:
\[s = \frac{A}{S} [-] \]
(6)

in which:
\[S = \text{the area of the test specimen (in m}^2) \]

4.2. Accuracy

The accuracy of the sound absorption as calculated can be expressed in terms of repeatability (tests within one laboratory) and reproducibility (between various laboratories).
When two tests are performed on identical test material within a short period of time by the same person or team, using the same instrumentation, under unchanged environmental conditions, the probability will be 95% that the difference between the two test results will be less than or equal to \(r \).

In order to evaluate the repeatability \(r \) for the sound absorption measurements performed in the reverberation room of "Peutz bv" in Mook (the Netherlands) eight series of measurements have been carried out according to ISO 354:1985 annex C. From the results of those measurements the repeatability \(r \) has been calculated. It was found that for the frequency range from 100 to 200 Hz and at 5000 Hz the repeatability \(r \) is 0.21 as a maximum. For the frequency range 250 to 4000 Hz the repeatability \(r \) is 0.09 as a maximum.

4.3. Atmospheric conditions

The atmospheric conditions during the measurements are presented in table 1.

<table>
<thead>
<tr>
<th>Reverberation room temperature</th>
<th>Atmospheric pressure [kPa]</th>
<th>Relative humidity [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty</td>
<td>16.2</td>
<td>100.5</td>
</tr>
<tr>
<td>Parmephon Snow</td>
<td>16.1</td>
<td>100.4</td>
</tr>
</tbody>
</table>

4.4. Results

The results of the measurements are given in table 2 and 3 and in figure 4 up to and including 10.

The measurements were made in 1/3-octave bands. The results presented in octave bands are the arithmetic average of the results of the three 1/3-octave bands belonging to that octave-band.

The values the following one-figure ratings have been calculated and stated:

- the "weighted sound absorption coefficient \(\omega \)" according to ISO 11654;

- the "Noise Reduction Coefficient NRC" according to ASTM-C423, being the average of the absorption coefficients (1/3 octave values) at the frequencies of 250, 500, 1000 and 2000 Hz, rounded to the nearest 0.05.
<table>
<thead>
<tr>
<th>Ceiling panel type</th>
<th>Snow</th>
<th>Advance</th>
<th>Polo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency [Hz] 1/3 oct. 1/1 oct.</td>
<td>1/3 oct. 1/1 oct. 1/3 oct. 1/1 oct.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0,22</td>
<td>0,24</td>
<td>0,20</td>
</tr>
<tr>
<td>125</td>
<td>0,39</td>
<td>0,41</td>
<td>0,35</td>
</tr>
<tr>
<td>160</td>
<td>0,62</td>
<td>0,59</td>
<td>0,55</td>
</tr>
<tr>
<td>200</td>
<td>0,64</td>
<td>0,63</td>
<td>0,61</td>
</tr>
<tr>
<td>250</td>
<td>0,84</td>
<td>0,80</td>
<td>0,81</td>
</tr>
<tr>
<td>315</td>
<td>0,91</td>
<td>0,92</td>
<td>0,92</td>
</tr>
<tr>
<td>400</td>
<td>0,89</td>
<td>0,90</td>
<td>0,89</td>
</tr>
<tr>
<td>500</td>
<td>0,90</td>
<td>0,89</td>
<td>0,95</td>
</tr>
<tr>
<td>630</td>
<td>0,88</td>
<td>0,89</td>
<td>0,89</td>
</tr>
<tr>
<td>800</td>
<td>0,80</td>
<td>0,84</td>
<td>0,83</td>
</tr>
<tr>
<td>1000</td>
<td>0,83</td>
<td>0,86</td>
<td>0,80</td>
</tr>
<tr>
<td>1250</td>
<td>0,95</td>
<td>0,91</td>
<td>0,91</td>
</tr>
<tr>
<td>1600</td>
<td>0,93</td>
<td>0,94</td>
<td>0,94</td>
</tr>
<tr>
<td>2000</td>
<td>0,96</td>
<td>0,96</td>
<td>0,94</td>
</tr>
<tr>
<td>2500</td>
<td>1,00</td>
<td>0,99</td>
<td>0,98</td>
</tr>
<tr>
<td>3150</td>
<td>1,02</td>
<td>0,99</td>
<td>0,97</td>
</tr>
<tr>
<td>4000</td>
<td>1,00</td>
<td>0,99</td>
<td>0,99</td>
</tr>
<tr>
<td>5000</td>
<td>0,95</td>
<td>1,01</td>
<td>1,01</td>
</tr>
<tr>
<td>NRC</td>
<td>0,90</td>
<td>0,90</td>
<td>0,90</td>
</tr>
<tr>
<td>0,90</td>
<td>0,90</td>
<td>0,85</td>
<td></td>
</tr>
</tbody>
</table>
Table 3 Measurement results wall panels

<table>
<thead>
<tr>
<th>Thickness wall panel</th>
<th>Sound absorption coefficient</th>
<th>Frequency [Hz] 1/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 mm</td>
<td>0.05</td>
<td>1/1 oct. 1/3 oct. 1/3 oct. 1/1 oct. 1/3 oct. 1/3 oct. 1/3 oct.</td>
</tr>
<tr>
<td>20 mm</td>
<td>0.05</td>
<td>0.09</td>
</tr>
<tr>
<td>40 mm</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>40 mm</td>
<td>0.21</td>
<td>0.31</td>
</tr>
<tr>
<td>40 mm</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>20 mm</td>
<td>0.12</td>
<td>0.27</td>
</tr>
<tr>
<td>60 mm</td>
<td>0.27</td>
<td>0.47</td>
</tr>
<tr>
<td>40 mm</td>
<td>0.45</td>
<td>0.65</td>
</tr>
<tr>
<td>80 mm</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>0.55</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>0.49</td>
<td>0.91</td>
</tr>
<tr>
<td>500</td>
<td>0.66</td>
<td>0.96</td>
</tr>
<tr>
<td>630</td>
<td>0.77</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0.94</td>
<td>1.01</td>
</tr>
<tr>
<td>1250</td>
<td>0.97</td>
<td>1.00</td>
</tr>
<tr>
<td>1600</td>
<td>1.03</td>
<td>1.00</td>
</tr>
<tr>
<td>2000</td>
<td>1.05</td>
<td>1.00</td>
</tr>
<tr>
<td>2500</td>
<td>1.04</td>
<td>1.00</td>
</tr>
<tr>
<td>3150</td>
<td>1.01</td>
<td>1.03</td>
</tr>
<tr>
<td>4000</td>
<td>1.02</td>
<td>1.04</td>
</tr>
<tr>
<td>5000</td>
<td>1.02</td>
<td>1.04</td>
</tr>
<tr>
<td></td>
<td>0.50(MH)</td>
<td>0.75(MH)</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>1.00</td>
</tr>
<tr>
<td>NRC</td>
<td>0.70</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td></td>
</tr>
</tbody>
</table>

The sound absorption coefficient of a material is not a material property. It should be taken into account that the sound absorption of a construction depends on the dimensions, the way of mounting of the material and its position in the room.

Mook,

Th. Scheers
Laboratory Supervisor

ir. M.L.S Vercammen
Manager

This report contains:
11 pages
10 figures

A 1597-2E-RA
OVERVIEW

Story

- air plenum (E)
- floor
- silencer (8)
- level +2800 mm

Ground level

- opening (A) (closed)
- w x h = 1.30 x 1.80 m

- air supply installations (6)
- reverberation room (B)
- receiving room (C) (D)
- sending room

- suspended ceilings or raised floors

- workshop
- conference analyses room
- overhead door

TEST OPENINGS (w x h in mm)

- (B) 1000 x 2200
- (C) 1500 x 1250
- (D) 4300 x 2800
- (E) 4000 x 4000

0 1 2 3 4 5 m

scale
The reverberation room meets the requirements of ISO 354:2003.

additional data:
volume: 214 m3
total area S (walls, floor and ceiling): 219 m2

diffusion: by the shape of the room and by adding 6 curved and 2 flat reflecting elements with a total area of approx. 13 m2 a sufficient diffusion has been gained.

reverberation time of the empty reverberation room during measurements of 09-02-2007
frequency (1/1 oct.) 125 250 500 1000 2000 4000 Hz
reverberation time 9,87 7,90 8,31 6,89 4,69 2,87 s

repeatability r c.f. ISO 354:1985 annex C (see chapter 4.2 of this report).
r at high 0.13 0.08 0.06 0.03 0.05 0.09 -
r at low 0.11 0.02 0.01 0.02 0.02 0.05 -

A 1597-2E-RA
Laboratory for Acoustics

Measurement of Sound Absorption in a Reverberation Room
According to ISO 354:2003

Principal: Gökçe Acoustics

Type: Parmephon Snow

Manufacturer: Gökçe Acoustics

Material: Glasswool

Panel sizes: 594 x 594 mm

Total thickness: 19 mm

Finish front: Painted glass tissue

Finish back: Glass tissue

Total mass: 1,9 kg/m²

Volume reverberation room: 214 m³

Surface area sample: 10,8 m²

Height of the construction: 0,200 m

Measured at: Laboratory conditions

Signal: Broad-band noise

Bandwidth: 1/3 octave

(ISO 11654) = 0,90

NRC (ASTM - C423) = 0,90

<table>
<thead>
<tr>
<th>Frequency</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1k</th>
<th>2k</th>
<th>4k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hz</td>
<td>0.22</td>
<td>0.64</td>
<td>0.89</td>
<td>0.80</td>
<td>0.93</td>
<td>1.02</td>
</tr>
<tr>
<td>1/3 oct</td>
<td>0.39</td>
<td>0.84</td>
<td>0.90</td>
<td>0.83</td>
<td>0.96</td>
<td>1.00</td>
</tr>
<tr>
<td>1/1 oct</td>
<td>0.62</td>
<td>0.91</td>
<td>0.88</td>
<td>0.95</td>
<td>1.00</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Publication is permitted for the entire page only

Mook, 09-02-2007
<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>1/3 Octave</th>
<th>1/1 Octave</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.24</td>
<td>0.39</td>
</tr>
<tr>
<td>500</td>
<td>0.63</td>
<td>0.79</td>
</tr>
<tr>
<td>1250</td>
<td>0.90</td>
<td>0.91</td>
</tr>
<tr>
<td>2500</td>
<td>0.94</td>
<td>0.96</td>
</tr>
<tr>
<td>5000</td>
<td>0.99</td>
<td>1.00</td>
</tr>
</tbody>
</table>

NRC (ASTM - C423) = 0.90

Volume reverberation room: 214 m³

Surface area sample: 10.8 m²

Height of the construction: 0.200 m

Measured at: laboratory conditions

Signal: broad-band noise

Bandwidth: 1/3 octave
MEASUREMENT OF SOUND ABSORPTION IN A REVERBERATION ROOM
ACCORDING TO ISO 354:2003
principal: Gökçe Acoustics

type: Parmephon Polo
manufacturer: Gökçe Acoustics
material: glasswool
panel sizes: 594 x 594 mm
total thickness: 19 mm
finish front: painted glass tissue
finish back: glass tissue
total mass: 1.6 kg/m²

volume reverberation room: 214 m³
surface area sample: 10.8 m²
heigth of the construction: 2.00 m
measured at: laboratory conditions
signal: broad-band noise
bandwidth: 1/3 octave

NRC (ASTM C423) = 0.85

publication is permitted for the entire page only

Mook, 09-02-2007
type: Parmephon wallpanel 20 mm

manufacturer: Gökçe Acoustics
material: glasswool
panel sizes: 1200 x 600 mm
total thickness: 20 mm
finish front: glastissue + fabric
finish back: glass tissue
finish edges plastered
total mass: 2,4 kg/m

volume reverberation room: 214 m
surface area sample: 10,8 m
height of the construction: 0,020 m
measured at: laboratory conditions
signal: broad-band noise
bandwidth: 1/3 octave

NRC (ASTM - C423) = 0,70

1/3 oct. 0,04 0,12 0,49 0,84 1,03 1,01
1/1 oct. 0,05 0,20 0,66 0,94 1,05 1,02

publication is permitted for the entire page only

Mook, 15-02-2007

A 1597-2E-RA
Laboratory for Acoustics

Measurement of Sound Absorption in a Reverberation Room

According to ISO 354:2003

Principal: Gökçe Acoustics

Type: Parmephon wall panel 20 mm

- **Manufacturer:** Gökçe Acoustics
- **Material:** Glasswool
- **Panel Sizes:** 1200 x 600 mm
- **Total Thickness:** 20 mm
- **Finish Front:** Glasstissue + fabric
- **Finish Back:** Glass tissue
- **Finish Edges:** Plastered
- **Total Mass:** 2.4 kg/m

Volume Reverberation Room: 214 m

Surface Area Sample: 10.8 m

Height of the Construction: 0.060 m

Measured at: Laboratory conditions

Signal: Broad-band noise

Bandwidth: 1/3 octave

NRC (ASTM-C423) = 0.85

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1k</th>
<th>2k</th>
<th>4k</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.09</td>
<td>0.27</td>
<td>0.83</td>
<td>1.01</td>
<td>1.02</td>
<td>1.01</td>
</tr>
<tr>
<td>1/3 oct.</td>
<td>0.10</td>
<td>0.43</td>
<td>0.96</td>
<td>1.01</td>
<td>1.00</td>
<td>1.02</td>
</tr>
<tr>
<td>1/1 oct.</td>
<td>0.19</td>
<td>0.64</td>
<td>1.01</td>
<td>1.02</td>
<td>0.99</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Publication is permitted for the entire page only

Mook, 15-02-2007
LABORATORY FOR ACOUSTICS

MEASUREMENT OF SOUND ABSORPTION IN A REVERBERATION ROOM
ACCORDING TO ISO 354:2003
principal: Gökçe Acoustics

type: Parmephon wallpanel 40 mm
manufacturer: Gökçe Acoustics
material: glasswool
panel size: 1200 x 600 mm
total thickness: 40 mm
finish front: glastissue + fabric
finish back: glass tissue
finish edges plastered with a groove
total mass: 6,5 kg/m²

volume reverberation room: 214 m³
surface area sample: 10,8 m²
height of the construction: 0,040 m
measured at: laboratory conditions
signal: broad-band noise
bandwidth: 1/3 octave

NRC (ASTM - C423) = 0,90

publication is permitted for the entire page only

Mook, 15-02-2007

A 1597-2E-RA
LABORATORY FOR ACOUSTICS

MEASUREMENT OF SOUND ABSORPTION IN A REVERBERATION ROOM
ACCORDING TO ISO 354:2003
principal: Gökçe Acoustics

Parmephon wallpanel 40 mm

- manufacturer: Gökçe Acoustics
- material: glasswool
- panel sizes: 1200 x 600 mm
- total thickness: 40 mm
- finish front: glass tissue + fabric
- finish back: glass tissue
- finish edges: plastered with a groove
- total mass: 6.5 kg/m²

Reverberation room

- volume: 214 m³
- surface area sample: 10.8 m²
- height of the construction: 0.080 m
- measured at: laboratory conditions
- signal: broad-band noise
- bandwidth: 1/3 octave

NRC (ASTM - C423) = 0.95

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1k</th>
<th>2k</th>
<th>4k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3 oct.</td>
<td>0.16</td>
<td>0.61</td>
<td>0.90</td>
<td>0.98</td>
<td>1.01</td>
<td>1.04</td>
</tr>
<tr>
<td>1/1 oct.</td>
<td>0.48</td>
<td>0.84</td>
<td>0.96</td>
<td>0.97</td>
<td>1.01</td>
<td>1.04</td>
</tr>
</tbody>
</table>

* publication is permitted for the entire page only

Mook, 15-02-2007